师资团队

王旭

邮箱:xu.wang@pku-iaas.edu.cn

研究领域:光受体和光信号转导分子机制;辣椒重要天然产物(辣椒素和辣椒红素)含量调控的分子遗传机制。

简介

个人简介

2007-2014  中国农业科学院,作物科学研究所,理学博士

2014-2019  美国加州大学洛杉矶分校,分子、细胞及发育生物学系,博士后

2019-2022  美国加州大学洛杉矶分校,分子、细胞及发育生物学系,助理项目科学家

2022-至今  伟德betvlctor体育官网现代农业研究院,研究员

 

主要研究领域

光作为最重要的环境因子之一,不仅是植物生存的直接能量来源,也是调节植物生长发育的关键信号。植物通过体内不同的光受体蛋白感知周围环境光的变化,调节自身的生理代谢状态和生长发育程序以适应环境。深入理解植物对环境光信号的响应机制,不仅具有重要的科学价值,同时也能为作物育种和品质改良提供理论指导。本实验室的研究方向之一是植物蓝光受体和蓝光信号转导的分子机制。

辣椒是我国第一大蔬菜,其果实特有的天然产物辣椒素和辣椒红素广泛应用于食品、保健、医药卫生和工业等众多领域,市场需求巨大。但以提升这两种物质含量为目标的辣椒育种实践严重受限于狭窄的种质资源和滞后的基础研究。本实验室的另一研究方向是利用多组学联合分析,结合遗传学、细胞生物学、生物化学和分子生物学、以及结构生物学手段,系统解析辣椒红素和辣椒素生物合成和代谢途径的细胞学和分子遗传调控机制,为培育提取工业用途的辣椒新品种提供理论基础。

 

发表论文

1.  Jiang, B., Zhong, Z., Gu, L., Zhang, X., Wei, J., Lin, G., Qu, G., Xiang, X., Wen, C., Gateas, M., Serres, J., Wang, Q., He, C., Wang, X.#, and Lin, C.# (2023). Photo-condensation of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. Nature Plants. (https://doi.org/10.1038/s41477-023-01580-0.). (#共同通讯作者)

2.  Jiang, B., Zhong, Z., Su, J., Zhu, T., Yueh, T., Bragasin, J., Bu, V., Zhou, C., Lin, C. and Wang, X.# (2023). Co-condensation with photoexcited Cryptochromes facilitates MAC3A to positively control hypocotyl growth in Arabidopsis. Science Advances. 9, eadh4048. (#)

3.   Liu, S.*, Zhang, L.*, Hu, X., Chen, Y., Zhang, S., Zhao, Q., Bie, Y., Wang, X.# and Wang, Q.# (2022). Differential photoregulation of the nuclear and cytoplasmic CRY1 in Arabidopsis. New Phytologist.234: 1332-1346.(#)

4.  Wang, X.*, Jiang, B.*, Gu, Lianfeng.*, Chen, Y., Mora, M., Zhu, M., Noory, E., Wang, Q.# and Lin, C.# (2021). A photoregulatory mechanism of the circadian clock in Arabidopsis. Nature Plants. 7: 1397.

5.  Cheng, Z., Zhang, X., Huang, P., Huang, G., Zhu, J., Chen, F., Miao, Y., Liu, L., Fu, Y-F#. and Wang, X.#(2020). Nup96 and HOS1 are Mutually Stabilized and Gate CONSTANS Protein Level, Conferring Long-day Photoperiodic Flowering Regulation in Arabidopsis. Plant Cell. 32: 374 (#)

6.  Wang, X., Wang, Q., Han, Y.-J., Liu, Q., Gu, L., Yang, Z., Su, J., Liu, B., Zuo, Z., He, W., Wang, J., Liu, B., Matsui, M., Kim, J.-I., Oka, Y. and Lin, C. (2017). A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis. Plant Journal, 92: 426.

7.  Wang, Q*., Zuo Z.*, Wang, X.*, Gu, L., Yoshizumi, T., Yang, Z., Yang, L., Liu, Q., Liu W., Han, Y., Liu B., Wohlschlegel, J., Matsui, M., Oka, Y. and Lin, C. (2016). Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science. 354: 343. (*)

8.  Gao, J.*, Wang, X, Zhang, M., Bian, M., Deng, W., Zuo, Z., Yang, Z., Zhong, D., and Lin, C. (2015). Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. PNAS, 112: 9135. (*)

9.  Yang, L.*, Wang, X.*, Deng, W., Mo, W., Liu, Q., Zhang, C., Wang, Q., Lin, C and Zuo, Z. (2016). Using HEK293T Expression System to Study Photoactive Plant Cryptochromes. Frontiers in Plant Science, 7:940. (*)

10.   Wang, X., Fan,C., Zhang,X., Zhu,J. and Fu, Y. (2013). BioVector, a flexible system for gene specific-expression in plants. BMC Plant Biology, 13:198.

11.  Fan, C.*, Wang, X.*, Wang, Y., Hu, R., Zhang, X., Chen, J. and Fu, Y. (2013). Genome-Wide Expression Analysis of Soybean MADS Genes Showing Potential Function in the Seed Development. PLoS ONE, 8: e62288. (*)

12.  Wang, Q.*, Liu, Q.*, Wang, X., Zuo Z., Oka, Y. and Lin, C. (2018). New insights into the mechanisms of phytochrome-cryptochrome coaction. New Phytologist, 217: 547.

13. Wang, Q., Zuo, Z., Wang, X., Liu, Q., Gu, L., Oka, Y. and Lin, C. (2018). Beyond the photocycle — how cryptochromes regulate photoresponses in plants. Current Opinion in Plant Biology, 45:120

14. Liu, L.*, Jiang, Y. *, Zhang, X. *, Wang, X., Wang, Y., Han, Y., Coupland, G., Jin, J., Searle, I., Fu Y. and Chen, F. (2017). Two SUMO Proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 Are Required for Fertility in Arabidopsis. Plant Physiology, 175:1703.

15.  Liu, Q., Wang Q., Deng W.,Wang X., Piao M., Cai D., Li Y., Barshop W., Yu X., Zhou T., Liu B., Oka Y., Wohlschlegel J., Zuo Z. and Lin C. (2017). Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nature Communications. 8: 15234. 

16. Liu, Q., Wang, Q., Liu, B., Wang, W., Wang, X., Park, J., Yang, Z., Du, X., Bian, M. and Lin, C. (2016). The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases. Plant & Cell Physiology, 57: 2175

17.  Li, Q., Fan, C., Zhang, X., Wang, X., Wu, F., Hu, R. and Fu, Y. (2014). Identification of a Soybean MOTHER OF FT AND TFL1 Homolog Involved in Regulation of Seed Germination. PLoS ONE, 9: e99642.

18.  Fan, C., Hu, R., Zhang, X., Wang, X., Zhang, W., Zhang, Q., Ma, J. and Fu, Y. (2014) Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean. BMC Plant Biology. 14:9.

19.  Fan, C., Wang, X., Hu, R., Wang, Y., Xiao, C., Jiang, Y., Zhang, X., Zheng, C. and Fu, Y. (2013) The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC Plant Biology.13:48.

20.  Wang, X.#, Liu, Q., He, W., Lin, C. and Wang, Q#. (2019). Characterization of Flowering Time Mutants. In: Hiltbrunner A. (eds) Phytochromes. Methods in Molecular Biology, vol 2026. Humana, New York, NY. (#)

21.  Wang, X. # Wang, Q., Nguyen, P. and Lin, C. (2014). Cryptochrome-mediated light responses in plants. Enzymes. 35:167-89. ( #)